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Abstract

This study describes the establishment of similarity conditions between two structural

systems. Similarity conditions provide the relationship between a scale model and its

prototype, and can be used to predict the behavior of the prototype by extrapolating

the experimental data of the corresponding small scale model. Since satisfying all the

similarity conditions simultaneously is difficult or even impossible, distorted models

with partial similarity (with at least one similarity condition relaxed) are more practi-

cal. Establishing similarity conditions, based on both dimensional analysis and direct

use of governing equations, is discussed and the possibility of designing distorted mod-

els is investigated. The method is demonstrated through analysis of the cylindrical

bending of orthotropic laminated beam-plates subjected to transverse line loads.
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Chapter 1

INTRODUCTION

1.1 Introduction

Before production, any new design is subjected to many investigations through the-

oretical analyses and experimental verification. As a system becomes more complex,

assumptions are usually made in order to formulate a mathematical model for the

system . In the absence of a complete design base, a new system requires extensive

experimental evaluation until it gains the necessary reliability and desired perfor-

mance. Since most of these tests are destructive, many test specimens are needed

(Morton,1988).

For large and "oversize" systems, such as tall buildings, dams, bridges, spacecraft,

airplanes, and space stations, creating the actual working conditions for testing the

prototype most of the time is impossible, as in providing a "zero gravitional accelara-

tion condition " on the ground for testing large space stations or antennas (Letchworth

et al., 1988 and McGowan et a1,1990). Even when a prototype test is possible, it is

expensive, time consuming , and difficult to control. Thus, it is extremely useful if

a prototype can be replaced by a similar scale model which is much easier to work

with. The only possible way to obtain experimental data of overall performance of

such a system and the interaction of its elements is to design a small similar system

(scale model ) which replicates the behavior of the actual system (prototype). The

accuracy of the behavior of the prototype , which is predicted from interpreting the

test results of the model, is dependent on the relationship between the corresponding



variables and parameters of model and its prototype.

Similarity of systems requires that the relevant system parameters are identical

and these systems are governed by unique set of characteristic equations. Thus, if

a relation or equation of variables is written for a system, it is valid for all systems

which are similar to it (Kline,1965). Each variable in a model is proportional to

the corresponding variable of the prototype. This ratio, which has essential roles in

predicting the relationship between model and its prototype, is called scale factor.

Since making a precise and adequate experiment is difficult and expensive, it is

more convenient to run a series of experiments in nondimensional form of variables,

the results of which can then be used for a similar system. Models, as a design aid,

have been used for several years, but the use of scientific models which are based on

dimensional analysis was first discussed in a paper by Rayleigh. Similarity conditions

based on dimensional analysis have been used since Rayleigh's time (Macagno,1971),

but the applicability of the theory of simifitude to structural systems was first dis-

cussed by Goodier and Thomson (1944). They presented a systematic procedure for

establishing similarity conditions based on dimensional analysis.

In establishing similarity conditions between the model and prototype two proce-

dures can be used. The similarity conditions can be established either directly from

the field equations of the system or, if it is a new phenomenon and the mathematical

model of the system is not available, through dimensional analysis. In the second

case, all of the variables and parameters which affect the behavior of the system must

be known. By using dimensional analysis, an incomplete form of the characteristic

equation of the system can be formulated. This equation is in terms of nondimen-

sional products of variables and parameters of the system. Then, similarity conditions

can be established on the basis of this equation.

The objective of this study is to discuss and demonstrate the establishment of

the similarity relations between two structural systems. Similarity conditions provide

the relationship between model and its prototype, and can be used to extrapolate

the experimental data of a small and less expensive model in order to predict the

behavior of the prototype. In all of our work in this area we will restict ourselves to



linearly elastic material behavior.

1.2 Literature Review

The scientific small scale model based on dimensional analysis, was first discused by

Rayleigh(1915). He established the fundamentals of dimensional analysis based on

Fourier's work. This principle has been reviewed and completed by Riabouchinsky,

Buckingham, Bridgman, Bickhoff, and Langhaar. (for more detail see Macango,

1971).

The applicability of the theory of similitude to structural systems was first dis-

cused by Goodier and Thomson(1944) and later by Goodier in 1955. In the 50's

and 60's many interesting books have been published in this area, Murphy(1950),

Langhaar(1951), Sedov(1959), Kline(1965), Skoglund(1967). Most of these authors

discussed similitude theory based on dimensional analysis. Kline(1965) gives a per-

spective of the method based on both, dimensional analysis and the direct use of

the governing equations. Szucs (1980) is particularly thorough on the topic of the

similitude theory. He explains the method with emphasis on the direct use of the

governing equations of the system.

Many research activities have been conducted on modeling of dynamic and static

behavior of structural systems, especially on modeling the reinforced concrete struc-

tures, (see Sabines and White (1966,1977), Harris et.al.(1966,1970)). Krawinkler

et.al.(1978) described detailed model studies on earthquake resistance of structures

and presented a comprehensive reference on the dynamic behavior of structures for

seismic engineering analysis.

Since reinforced composite components require extensive experimental evaluation,

there is a growing interest in small scale model testing. Morton (1988) discusses the

application of scaling laws for impact-loaded Carbon-Fiber composite beams. His

work is based on dimensional analysis. Qian et.al.(1990) conducted experimental

studies of impact loaded composite plates, where the similarity conditions were ob-

tained by considering the governing equations of the system.

3



In recent years, due to large dimensions and unique structural design of the pro-

posed space station, small scale model testing and similitude analysis have been con-

sidered as the only option in order to gain experimental data. Letchworth et.al.(1988),

Shih et.al.(1987), nsu et.al.(1989), and McGowan et.al.(1990) discussed the possibil-

ity of scale model testing of space station geometries especially for vibration analysis.

Most of these studies have used complete similarity between model and prototype.

The objectives of the investigation described herein are:

• explore two fundamental methods of similitude analysis

• create necessary similarity conditions in order to design an accurate distorted

model

• evaluate the derived similarity conditions analytically and correlate the actual

experimental data of the prototype with the small scale model predictions.

The experimental data of cylindrical bending of several beam-plates are used to sup-

port the applicability of the derived similarity conditions.



Chapter 2

THEORY OF SIMILITUDE

This chapter is devoted to consideration of foundations of the similitude theory. The

meaning of similitude is explained, and two major methods of obtaining similarity

conditions are discussed.

Similitude theory is concerned with establishing necessary and sufficient conditions

of similarity between two phenomena. Establishing similarity between systems helps

to predict the behavior of a system from the results of investigating other systems

which have already been investigated or can be investigated more easily than the

original system. Similitude among systems means similarity in behavior in some

specific aspects. In other words, knowing how a given system responds to a specific

input, the response of all similar systems to similar input can be predicted.

Euclid established the fundamental theory of similitude by defining geometric sim-

ilarity for plane geometric figures. According to this theory, enlarging or contracting

all dimensions of a figure by a constant ratio, which is called scale or similarity factor,

forms figures which are similar to the original figure.

The behavior of a physical system depends on many parameters, i.e. geometry ,

material behavior, dynamic response, and energy characteristic of the system. The

nature of any system can be modeled mathematically in term of its variables and

parameters. A prototype and its scale model are two different systems with different

parameters. The necessary and sufficient conditions of similitude between prototype

and its scale model require that the mathematical model of the scale model can be

transformed to that of the prototype by a bi-unique mapping or vice versa (Szucs,

5



1980). It means,if vectorsXp and Xm are the characteristic vectors of the prototype

and model, then we can find a transformation matrix A such that

Xp = AX,. or Xm = A-1Xn (2.1)

The elements of vector X are all the parameters and variables of the system. A

diagonal form of the transformation matrix A is the simplest form of transformation.

The diagonal elements of the matrix are the scale factors of the pertinent element of

the characteristic vector X.

h

Xip
where A,,-

Xirn

matrix is not diagonal.

Axl 0 ... 0

0 Ax2 ... 0

: : ".. :

0 0 ... A_,,

(2.2)

denotes the scale factor of xi. In general the transformation

Since similitude theory gives many alternative ways for investigating a system, it

has been used in areas which primarily involved many experimental investigations.

Two methods, dimensional analysis and direct use of governing equations are used to

establish similitude between systems.

2.1 Dimensional Analysis

The principal purpose of dimensional analysis is to reduce the number of parameters

by establishing product groups of variables (It-terms) such that all terms are mutually

independent and dimensionless.

Rayleigh established the fundamentals of dimensional analysis based on Fourier's

work. Riabouchinsky proved the fundamental theorems of dimensional analysis ,

and Buckingham reformulated Riabouchinsky's theorems. Buckingham's theorem

was discussed and revised by Bridgman, Brickhoff, Langhaar, Van Driest, and Brand,

and was named Buckingham's r-Theorem, or simply the _r-Theorem (Macagno,1971).

This theorem states that a given relation among n variables can be reduced to an

equivalent relationship in terms of a complete set of n -r dimensionless _r-terms,



wherer is the rank of the dimensionalmatrix.

= 0 or = 0 (2.3)

The function (I) is called functional relation. The functional relation need not be a

known function of the system variables. Function (I) only shows the reduced form of

relevant variables and does not give any information about the nature of the solution.

Any physical system can be described in term of various combinations of fundamental

quantities such as M(mass), L(lenght), F(force), T (time), and secondary quantities

such as v (velocity) ,a (stress), A(area) etc. The first step is to choose an adequate

set of fundamental quantities (dimensions). Then all variables can be described in

this system, which is unique for that set of fundamental dimensions, and can change

by choosing another set of dimensions. It is necessary that all pertinent parameters,

even constants like the gravitational acceleration g, be included, otherwise the analysis

leads to incorrect and incomplete results.

Barr(1983) has presented five methods for dimensional analysis. These are the

Rayleigh method and various modifications such as the Buckingham method, the

Echlon Matrix method, the Basic Stepwise method, and the Proportionalities method.

As an example consider the procedure for finding the buckling load of a simply

supported elastic column with an elastic support at the middle (Figure 2.1). The

relevant variables are:

variable dimensions

w=deflection L **,
_k

I -L=span L

E=modulus of elasticity FL -2 [
A

I=moment of inertia L 4 _ II L

k=sprin9 stiffness FL -x l 2
L

P=azial load F I

A _P

I
"i

Figure 2.1: Simply Supported Column



¢(w,L,E,I,k,P)=O

The dimensional matrix and the resulting r-terms are [see Barr (1979) for details on

the procedure]:

L E w I k P L E w I k P

F 0 1 0 0 1 1 =_ E 0 1 0 0 1 1

w I k P

rl = -- r2 - - EL 2L ' L4 , r3 LE , r4 -

By applying one of the dimensional analysis methods, a set of r-terms is calculated

which is not unique and many other combinations of parameters can yield several sets

of r-terms.

Since experimental control of some variables is easier than others, it is more con-

venient to have these variables only in one of the r-terms. Power products of r-terms

are also nondimensional which can be used in place of the inadequate r-terms. The

resulting r-terms can be written as

¢(rl, r2, 71"3, r4) : 0

If 7rl involves the dependent variable, it can be written as a function of the other

r-terms (independent variables).

rl = ¢(r2, r3, r4)

Similarity conditions require that the equations of two similar systems be the

same. If the r-terms of the functional equation for two systems are the same, then

¢1 = ¢2 even if we don't know the functional equation completely. These equalities

of r-terms which determine the conditions for which the two systems are similar,

are called the similarity conditions or scaling laws for these systems and for specific

phenomena.

if ri,_=rip for i=2,3,4,then

=



hence

7rlr a = X'lp

Since these 1r-terms are combinations of geometric, dynamic, material, and kine-

matic parameters of the systems, the above equalities define different similarities,

such as geometric , material, kinematic, and dynamic similarity (Schuring,1977).

2.2 Direct Use of Governing Equations

The field equations of a system with proper boundary and initial conditions char-

acterize the behavior of the system in terms of its variables and parameters. The

dependent variables or response of the system is a function of its independent vari-

ables (input and parameters of the system). If the field equations of the scale model

and its prototype are invariant under transformation A and A -1, then two systems are

similar [see Eq.( 2.1)]. This transformation defines the scaling laws (similarity condi-

tions) between all parameters, input, and response of the two systems. The problem

of finding similarity conditions for the buckling of a column, which was analysed

by dimensional analysis, is considered again (Figure 2.1). Considering the symmet-

ric mode of deflection, the vertical reaction of spring at the middle is k5 . Where

5 is deflection at the middle of column. From symmetry, for half of the column

0 <_ z <_ L/2 the reaction force is k5/2 . From Simitses (1976) the differential

equation and associated boundary conditions of the system are:

khw

EIw,_ + Pw - 2 (2.4)

w(o)= o
B.C. w_(L/2) = 0

w(L/2) =5

For model and prototype we may write

d2 wp kphpwp

_w,,, k,,,5,,,w,,,
E,,Im-- + P,_w,,, -

dx_ 2

where subscripts m and p refer to model and prototype respectively.

(2.5)

(2.6)



By defining scalefactors Ai , the variables of the prototype can be written as

zip = A,,xlm. The similarity conditions between model and prototype are determined

by substitution of the A,,zlm into the differential equation of the prototype and by

requiring that the result be the differential equation of the model, Eq.( 2.5)(complete

similarity).

,_,,,,,.,, _ + (A_,A,,,)P_wr,, =
(2.7)

Eqs.(2.6) and (2.7) are the same if the terms in parentheses of Eq.(2.7) are all equal.

(A_AzA_
, = = (2.8)

Dividing Eq.(2.8) by one of these terms, i.e. the first term ,

1= - (2.9)
AEAZ AEAz

or

and

-- 1 or Ap : A_2AEAI (2.10)
AEAI

akA6A 
- 1 or AkAsA_ : AEA I (2.11)

AEAI

Similarly for the boundary conditions,

m --

As - 1 or A_=A_ (2.12)

Eqs( 2.10)-(2.12) are necessary and suficient conditions for complete similarity

between model and prototype. These similarity conditions define three relation-

ship among seven unknown ($'s) . Hence we can choose four of A's freely and

find the values of the others by requiring satisfaction of the similarity conditions,

Eqs.( 2.10)-(2.12).

10



Chapter 3

PARTIAL SIMILARITY AND

DISTORTED MODEL

If all the r-terms for the model and the prototype are the same, or if all similarity

conditions are satisfied, the two systems are completely similar. But often complete

similarity is difficult or even undesirable. The model which has some relaxations in

similarity conditions is called a distorted model.

In complete similarity (in terms of r-terms) rim = rip for i = 1,...,N but

in partial similarity r_m = rip for i --- 1,..., k where k < N . These relaxations

in the relationship between two systems cause model behavior to be different from

that of the prototype. Understanding these relaxations and their effects in model

behavior can be used to modify the model test data so as to predict the behavior of

the prototype.

3.1 Dimensional Analysis

In dimensional analysis, similarity of each _r-term of the model with corresponding

r-term of the prototype is a function of the scale factors of the variables. Since there

are rn - r r-terms, the results will be m - r functions of m scale factors. If the

two systems are completely similar, the number of scale factors which can be chosen

freely is equal the rank of the dimensional matrix, r, and the m - r remaining scale

factors are determined by solving m - r similarity conditions.

11



complete - similarity partial - similarity

rlm-_rlp "/l'lrn=rl p

r2m :r2p r2m:r2p

rkm =7_lp 7rk-m =rkp

rkWlrn='gk+lp rk+lrn ¢ rk+lp

rnm=rnp rnm ¢ rnp

For a distorted model, inequality of some r-terms causes a change in scale factors

of those terms, r-terms which include these scale factors will also change. In this case,

the number of unknown scale factors is greater than the number of similarity equa-

tions and additional relationships between variables are needed. Dimensional analysis

cannot provide these relationships. These additional relationships between variables

can be established by the governing equations of the system, such as equations of

equilibrium and compatibility, kinematic relations, material behavior equations and

boundary conditions. If these equations are not available, by conducting a series of

experiments the effect of distortions on each term can be found while the other terms

are kept constant. A sufficient amount of data should be determined from model tests

so that these relationships can be understood clearly (Langhaar,1954).

3.2 Direct Use of Governing Equations

When governing equations of the system are used for establishing similarity condi-

tions, the relationships between variables are forced by these equations. Suppose

the system has m variables and similitude analysis of the governing equations of the

system define n relationship among m unknown, (scale factors of these variables).

If the two systems are completely similar m - n scale factors can be chosen freely

and the values of the other scale factors are found by using n similarity conditions.

When at least one of the similarity conditions can not be satisfied, partial similarity is

achieved. In this case, since each variable has different influence on the response of the

system, the resulting similarity conditions have different influence. By understanding

12



the effect of variables and similarity conditions over desired intervals, the similar-

ity conditions which havethe least influence canbe neglectedwithout introducing

significant error(Kline,1965).

Supposewewant to designa reasonable(ableto test) model for a largerectangular

plate. The plate is simply supported at all edgesand loaded with uniform load

of intensity q. Assume uniform cross section and isotropic material, the governing

differential equations and boundary conditions are well known (Timoshenko, 1959)

d4w d4w d4w q (3.1)
d x-----_ + 2d--fi-dy2 + d y--; =

andB.Cat x=0, a

and at y=0, b

w=O (3.2)

M== -D _w =0 (3.3)
dx 2

w=O

My = -D -W =0 (3.4)
dy 2

By applying similitude theory

A_ A_ Aw Sq (3.5)
_ = 2 2 =-4 --_DA=Ay Av

Now to find the scaling laws from Eq.(3.5), we have three choices. Dividing Eq.(3.5)

by first term, yields

)_== A_

Dividing Eq.(3.5) by the second term, yields

)%, _ Aq)O= (3.6)
)_m

)tw - )_q,X_)_ (3.7)
AD

and finally dividing Eq.(3.5) by third term

_ (3.8)
AD

13



To find which one of Eqs. ( 3.6)-(3.8) gives the best prediction for the prototype

behavior, the theoretical deflections of the model are projected with each condition

and compared to theoretical deflection of the prototype. For complete similarity, all

three give the same results. In order to avoid impractical size for the cross section we

need to choose different scale factors in the x ,y, and z directions.

Suppose Au = CA, where C > 0. Eqs.( 3.6)-(3.8) can be written as

= = C = 1 (3.9)
AD AD '

A,_ - AqA_A_ - C'AqA_ , C' = C 2 (3.10)
AD AD

A_ - AqA_ _ CAqA_ , C = C 4 (3.11)
AD AD

To find which one of Eqs.( 3.9)-(3.11) gives the best prediction for the prototype

behavior, the theoretical deflections of the model are projected with each one of

these conditions, Eqs.( 3.9)-(3.11), and compared to the theoretical deflection of

the prototype.

There are three possible configurations for the prototype.

a
• Rectangular _ > 1

a
• Square - = 1

b

a

• Inverse rectangular _ < 1

The characteristics of the model were calculated by using the given scale fac-

tors. The theoretical deflections of the model and prototype are given by the same

expression. From Timoshenko (1959), the deflection is given by

mrx . nry

16q0 _ oo sin---d--szn b
w- 7rSD _ _ m 2 n 22 (3.12)

m=ln=l mn[(_-) -_- (-_) ]

By using Eqs.( 3.9)-(3.11) the experimental data of the model were projected to

predict the deflections of the prototype. The predicted deflections of the prototype

were compared to the theoretical deflections of the prototype. The result is the %

14



discrepancy between predicted and theoretical deflections of the prototype.

%Discr. = Iwth" -wP"lx 100
II3th.

The % discrepancies of the prototype are calculated for different values

a

ferent Au). The different values of C imply different aspect ratios (_) for

For each C the experimental data were projected by Eqs.( 3.9),(3.10), (

possibility of distortion in the y-direction for each case is investigated. In

sis the experimental data of the model are manufactured from theoretical

of the model by randomly introducing a 4-10% discrepancy.

AE = A_ = Ap = 1.

(3.13)

of C (dif-

the model.

3.11). The

this analy-

deflections

For all of these cases

Case-l:

a

When the prototype is a rectangular plate (_)p > 1, a wide range of models can be
a

used. In this case as G' --* 10, (g)r_ increases, Eq.(3.11) yields excellent predictions

and the % discrepancy for the prototype decreases. Similarly, when (7 _ 0.01 the %

discrepancy increases. In this case, Eqs.( 3.9),(3.10) are not good choices for similarity

condition. In other words a rectangular plate can be replaced by another rectangular

plate with different aspect ratio, where (b)p _> 1 and Eq.(3.11) provides the needed

similarity condition. Figures 3.2- 3.7 present the predicted and theoretical deflection

of the rectangular plates for different values of C.

Case-2:

In this case the prototype is a square plate. The distortion is restricted to values

of C which are close to one. It means that the model must be a rectangular with
a

0.83 < (_),,, < 1.2. For this case Eqs.( 3.9),(3.10) yield good result. As C _ 10 or

C _ 0.01 the %discrepancy increases rapidly and none of the similitude conditions,

Eqs.( 3.9),( 3.10),and(3.11), yield acceptable results. In this case Eq.(3.11) is not a

a

suitable similarity condition even for small distortion((_)m _ 1). Figures 3.8- 3.10

15



showthe predicted deflection of the square plates for different values of C.

Case-3:

a

In this case where the prototype is a rectangle with (_),,, < 1(Inverse rectangular),

Eqs.(3.9) predicted the behavior of prototype very well, when C _ 0.01. However

as C _ 10 the %discrepancy increases slowly. The similarity conditions Eqs.(3.10)

and (3.11) are not suitable at all, since distortion from complete similarity causes the

%discrepancy to increase very fast. Figures 3.11- 3.15 demonstrate the predicted

deflection of the inverse rectangular plates for different values of C.

16



prototype

Table 3.1: Characteristics of the Prototypes

a (in) b (in) h (in) E (106psi) t/

Rectangular

Square

Inverse rect.

6000 600 60 25 0.23

6000 6000 60 25 0.23

3000 6000 60 25 0.23

model C

Table 3.2: Characteristics of the Models

a (in) Ab b (in) a/b h (in)

R1 0.01

R2 0.05

R3 0.1

R4 0.5

R5 1

R6 1.5

S1 0.1

$2 0.5

S3 1

$4 1.1

$5 1.5

$6 2

$7 10

IR1 0.1

IR2 0.5

IR3 0.75

IR4 1

IR5 2

IR6 4

IR7 10

R : Rectangular

S : Square

IR : Inverse rectangular

30 2 300 0.1

30 10 60 0.5

30 20 30 1

30 100 6 5

30 200 3 10

30 300 2 15

3O 20 3O0 0.i

30 I00 60 0.5

30 200 30 l

30 220 27.3 l.ll

30 300 20 1.5

30 400 15 2

30 2000 3 I0

15 20 300 0.05

15 100 60 0.25

15 150 40 0.625

15 20O 30 O.5

15 400 15 1

15 800 7.5 2

15 2000 3 5

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3
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Figures 3.16- 3.18 present the discrepancies between theoretical and predicted

maximum deflections of the simply supported plates as a function of C, the cross

section coefficient of the model, where 0.001 < C < 10. Each C represents a specific

Figure 3.16 shows these discrepancies for rectangular plates when different sim-

ilarity conditions are used. It is observed that Eq.(3.11) can predict the maximum

deflection of the model very well for a large range of C; especially for C > 1. The

other conditions, Eqs.( 3.9)and (3.10), have a large discrepancy for small distortion

of the model.

Figure 3.17 presents the discrepancies for square plates. It is clear that none

of Eqs.( 3.9)-(3.11) are suitable representation of similitude for distorted models.

However, for small changes in C (i.e where C is close to 1) Eq.(3.10) is reasonably

accurate.

The discrepancies for inverse rectangular plates are plotted in Figure 3.18. In

this case Eq.(3.9) can predict the behavior of the prototype very well as long as the

configurations of model and prototype are the same.
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Figure 3.1: Predicted and Theoretical Deflection of S-S Plate Complete Similarity or
C=1.
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Figure 3.2: Predicted, Eq.(2.11), and Theoretical Deflection of S-S Plate, (-_)p > 1

for C = 1.5.
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Figure 3.3: Predicted, Eq.(3.11), and Theoretical Deflection of S-S Plate, (-_)_ > I

for C = 0.1 .
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Figure 3.4: Predicted, Eq.(3.IO), and Theoretical Deflection of S-S Plate, (_)_ > 1

for C = 2 .
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Figure 3.5: Predicted, Eq.(3.1i), and Theoretical Deflection of S-S Plate, ( _ )_ > l

for C= 0.0I .
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Figure 3.6: Predicted, Eq.(3.I1), and Theoretical Deflection of S-S Plate, (_)_ >l

for C= 0.1 .
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Figure 3.7: Predicted, Eq.(3.1I), and Theoretical Deflection of S-S Plate, (_);, > 1
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for C = 2 .
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Figure 3.8: Predicted, Eq.(3.10), and Theoretical Deflection of S-S Plate, (_)p = 1

for C = 1.1 .
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Figure 3.10: Predicted, £q.(2.11), and Theoretical Deflection of S-S Plate, (-_)p = 1
for C = 0. i .
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Fig-ure 3.12: Predicted, £q.(3.10), and Theoretical Deflection of S-S Plate, (-_)p < 1

forC = 2.
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Figure 3.13: Pred.cted, Eq.(S.9), and TheoreticaI Deflection of S-S Plate, (_)p < 1
for C = 4 .
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Figure 3.14: Predicted, Eq.(3.1I), and Theoretical Deflection of S-S Plate, (7o) p < i
for C= 0.75 .
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Figure 3.15: Predicted, Eq.(3.1I), and Theoretical Deflection of S-S Plate, (-_)p < 1

for C = 4 .
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Chapter 4

APPLICATION TO

CYLINDRICAL BENDING OF

LAMINATED BEAM-PLATES

In this chapter, as an initial effort, similarity conditions are developed in order to

design resonable, distorted scale models for orthotropic laminated beam-plates. Plates

are subjected to transverse line loads. Later, the experimental data from 3-point

tests ( cylindrical bending) of the plates are used to verify the accuracy of the distorted

model in order to predict the maximum deflection of the prototype.

The available experimental data is used in the following way. One of the plates is

considered as prototype, the other as its scale model. Then the data of the model are

projected by scaling laws in order to predict the prototype behavior. The predicted

data are compared to actual experimental data of the prototype.

4.1 Similitude Analysis

Analysis

Based on Dimensional

Consider a cross-ply laminated plate composed of N orthotropic layers. The plate is

simply supported at x = 0, a, free at y = 0, b ,and subjected to a transverse line load

with intensity q0 (Fig. 4.1). The deflection of the system can be written as function

of these variables ;
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L.J

2 2

Figure 4.1: Three Point Test of Orthotropic Beam-Plate

variable dimensions

w = deflection

a -- 3pan

En = long. rood. of elas.

E_2 = trans, rood. of eIas.

GI: = modulus of rigidity

0 = fiber orientation

N = number of lamina

h = th(ckness

b = width

L'12 = poisson's ratio

u21 = poisson's ratio

qo = line load

L

L

FL-2

FL-2

FL-2

none

none

L

L

none

none

FL-I

q_(w, a, En, E22, GI:, u12, u21, h, b, N, 0, q) = 0
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The result _r-terms are

w a b G12
7["1 --- __ _71"2 = -- 71"3 --- __ 7I"4 --- __

a h ' h ' Ell

E22

71"6 : //21 ,71"7= N ,_r8 = 0 ,_'9 - Ell

where functional relation can be written as

,71" 5 _-_ /212

qo
,7rlo

E11h

a b G12 E22
Wa -- q) (h ' h ' Eia , v,2 , v21 , N , 0 , El---1

complete similarity is achived if

q0

' Ellh )

A,,12 = A_I = Ao = 1

AEn = AE22 = AG,2

A_, = Ab = Ah = AL

/_q0 ---- _EH )_L

Assume the model and prototype have the same material and fiber orientation. Then

from dimensional analysis (complete similarity)

Av12 ---- Av21 ---- AEll : AE22 ---- AG,2 ---- A0 : 1 (4.1)

Aw - A. = Ab = Ah (4.2)

If different scale factors are used in the z,y,z directions. Then A_ -_ Ab¢ Ah

hence A_, ¢ A, and a new relationship for A_, must be found. Dimensional anal-

ysis cannot provide any additional information. This necessary information can be

extracted from the analysis of laminated plates. Since model and its prototype both

have identical governing differential equations, similarity of these equations gives the

additional relationship. Thus, we have to apply similutude theory through the gov-

erning equations. For this reason in partial similarity, it is more convenient to employ

similitude theory based on direct use of field equations in order to design a reasonable

and acceptable distorted model.
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4.2 Similitude Analysis Based on Direct Use of

Governing Equations

By assuming that the displacement functions are independent of y ,or u = u(x),

v = O, w = w(x) (cylindrical bending) , from Ashton and Whitney (1970) the

governing differential equations and boundary conditions are reduced to

d4w qAn

dx-'---_ - AllDn - B_l

d3u BH d4w
w

dx 3 All dx 4

and the B.C.'s at x = 0, a are

(4.3)

(4.4)

w=O (4.5)
du d2w

N** = Atl_x x - Bll-d-fix 2 = 0 (4.6)

du _w

M=, = B,,_z - D,,_-_-x2 = 0 (4.7)

Eq.(4.3) can be written as

d*w

(AnD,_ - B_,)-_x 4 = qA,,

By applying similitude theory, the resulting similarity conditions are

4
2 .kA1, .k_.kq

or

AAn ADn = A_ n

A_AD, = A_A a

Similarly from Eqs.( 4.4),(4.6), and (4.7) we have

(4.s)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

The condition depicted by Eq.(4.13) does not give any new information, since it can

be obtained by combining Eqs.(4.10) and (4.12). So, Eqs.( 4.10)-(4.12) denote the
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necessaryconditions for completesimilarity betweenscalemodel and its prototype.

For better understanding the restrictions of Eq.(4.10), consider the definition of

Amn,B,_,_, and Din,,.
N

Ar,,,_ = _-_(O,m,_)j(zj- zj_x)
j=l

1 _(O,,,,_)j(z_- 2= - zj_l)
Bm,_ 2 j=l

1 g
.-- _ Zj_ 1)D,_,_ 3 __,(Om,,)j(z]- 3

j=l

where zj is the coordinate of the upper surface of the jth lamina (measured from the

plate reference surface). Let zj = cjh where -0.5 < cj _< 0.5 and h is the total

thickness (j = O, 1,..., N). ((_m,,)j, the transformed stiffnesses for the jth lamina is

given in terms of the engineering orthotropic constants and the fiber orientation angle

O.

(_ = f(O, En, E22, v12, G12)

This allows us to express Ar._ ,B,,,,_ , D_,, in terms of h and functions of all Q,N,and

the sequence in which the plies are arranged.

A,_..=hL(Q,.,,_,N)

B_,,=h2h(Q_n,N)

Dm,, = hafd(Q_,,,N)

or as scale factors

AA,,., = AhFa(Om,_,N)

As.,,, = A_F_(d2_,,,N)

AD,,,. = A]Fd(Q.,,,,N)

where F,- f,(O,N)p
.f/(Q, N)m ,i=a,b,d.

Substituting Eqs.( 4.14)-(4.16) into Eq.(4.10) we have

(4.14)

(4.15)

(4.16)

F_( Q,,, N)Fd( (),,, N) = F_( Q,,, N)
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This condition, Eq.(4.17), is satisfiedif the modeland prototype aremadeof the

samematerial with identical N and the same stacking sequence of the laminae.

4.3 Analytical Verification

In this section, the accuracy of the derived behavioral similarity conditions, Eqs.(4.10)

-(4.12) is evaluated analytically, in order to determine the level of confidence that

can be expected in interpreting the data from the model experiments.

Consider a cross-ply laminated E-Glass�Epoxy plate composed of 96 orthotropic

layers (0/90/0/...)96 as the prototype. We desire to find the maximum deflection

of the prototype by extrapolating the pertinent values of a small scale model. The

model has the same stacking sequence as the prototype but with a smaller number of

layers. The prototype and its scale model have the following characteristics;

prototype (0/90/0...)96 : a = 90 in b = 100 in h = 0.858 in N= 96

model (0/90/0...)16 : a = 5.0 in b = 6.139 in h = 0.143 in N = 16

Scale Factors : Aa = 18 Ab = 16.29 Ah = 6 AN = 6

For simplification we assume that model and prototype have the same material

properties (Ash = AE2_ = A_2 = 1), and Aq = Ab. By employing similarity condition

Eq.(4.11), (note that Ap = A_Aq; therefore the condition becomes A,_ADn = A3Ap)

the theoretical maximum deflections of the model are projected in order to predict

the maximum deflections of the prototype. Figure 4.2 presents the theoretical and

predicted maximum deflections of the prototype and corresponding theoretical values

of the scale model. The derived scaling laws can be used with high level of accuracy in

predicting the prototype behavior. Note that the model was designed by employing

the free scaling factors.
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Figure 4.2: Theoretical and Predicted Mazimum Deflections of Prototype (0/90/0/-.)96

when model (0/90/0/...)_.6 is used, (..kE,1 = Az= = A_= = 1, l_ = 18, Ab = Xq =

16.92, Ah = AN = 6).

If the model and prototype have the same material properties then A_ = 1 For

a scale model which has equal number of plies and stacking sequence of laminae

with prototype F_(O,_,N)= 1, i= a,b,d, and therefore AA,,, AB,, and AD,_ are

equal to h, h=,and h 3 respectively. In this case the similarity condition, Eq.(4.10), is

automaticly satisfied and Eqs.( 4.11),(4.t2) can be written as

kw = A3zkpAh -3

A, = A_AhA= -_ (4.19)

In general, by choosing the model material and using Eq.(4.10), the number of

plies of model (iV.,) can be determined. Since Ar must be an integer number, it is

difficult to satisfy the Eq.(4.10) , therefore partial similarity with a distorted model

is achieved.

Consider that model and prototype have the same material properties with dif-
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ferent number of layers Arm _ Np. Having material properties for both systems and

Np , Eq.(4.10) determines an approximate value for Nm. Using these parameters

h_.fd(O,,N)p = cd_3h (4.20)
)_Dn = h_.fd(O,,N)m

fa(O,N)p and Eqs.( 4.10)-(4.12) yield
where ca - fd((_,N)m

Cgt

_ = cd _i_ _ h
¢b

(4.21)

(4.22)

(4.23)

f,,(O,,N)p fb(O,,N)v

with c_ = f_(0, N)r, ,and cb = fb(O,,N),.,,"

35



4.4 Experimental Verification

To demonstrate the use of the above analysis, the experimental data of cylindri-

cal bending tests of 10 orthotropic plates are considered. These plates are made

of E-Glass/Epoxy and Kevlar/Epoxy with different number of layers and stacking

sequences of the laminae. Experimental data were provided by Professors Shive

Chaturverdi and Robert Sierakowski (1991).

Table 4.1: Characteristics of the Employed Beam-Plates

Plate b(in) h(in) N sequence

G1 6.139 0.143 16 (0/90/0...)16

G2 5.975 0.147 16 (0/90/0...)16

G3 6.087 O. 137 15 (03/903/03/903/03)

G4 6.101 O. 131 15 (03/903/03/903/03)

1(5 6.109 0.132 18 (0/90/0...)1s

K6 6.111 0.147 18 (0/90/0...)18

K7 6.042 O. 155 20 (04/904/04/904/04)

Ks 6.108 0.147 20 (04/904/04/904/04)

K9 6. 033 O. 135 18 (06/906/06)

KlO 6.107 O. 1_2 18 (06/906/06)

G : E-Glass/Epoxy

K : Kevlar/Epoxy

Table 4.1 shows the characteristics of the plates. All plates have identical span

a = 5.0in. In the demonstration one of these plates is considered as prototype and

another one as its scale model. The derived similarity conditions, Eqs.( 4.18)-(4.23),

are used to project the experimental data of the model in order to predict the deflec-

tion of the prototype. By comparing the value of predicted deflection with the actual

experimental deflection, the amount of discrepancy is calculated. The percentage of

discrepancy is defined as

%Discr. = Iw_p" -wPr'[ x 100 (4.24)
Wezp.
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CASE- 1

In this case, plate G4 is considered as the prototype and G3 is its scale model.

From the data of Table 4.1 these scale factors are calculated as;

As = 1.0 , Ab = 0.9977 , Ah = 1.0458

Since the number of the plies and the stacking sequence of the laminates are identical,

then A,_ is [Eq.( 4.18)]

A w : Aa3AqAh -3 (4.25)

Since As and Ah are known, Eq.(4.25) relates A_ and Aq. By choosing Aq , the

corresponding A_o is determined. Aq must be chosen based on elastic limit of the

model and the prototype. In this case, since both the model and prototype are made

of the same material, Aq can be expressed as a function of size scales ()%,)%, or Ah)

and AEn. For different nondimensionalized loads, Aq can be written as

Aq = A_n A_ = 1 (4.26)

Aq = AEn A_ = Ab (4.27)

Aq : AEa , A h ----- A h (4.28)

Figures 4.3 and 4.4 show the theoretical, predicted and experimental values of the

maximum deflection of the prototype G4 and its model G3 as functions of load. As

shown the model can predict the maximum deflections of the prototype with very high

accuracy. For clearer presentation of the results, the % discrepancy between the model

(experimental and theory) and its prototype (predicted and experimental , predicted

and theoretical) are shown in Fig 4.5 and 4.6. The % discrepancy between predicted

and experimental deflections of the prototype are less than 6%. This indicates an

excellent prediction. The predicted data match very well with experimental and

theoretical deflections of the prototype.
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Figure 4.5: %Discrepancy of Theory and Actual Test Results of Prototype G3
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CASE - 2

In this case, two Glass/Epoxy Plates G2 and G4 are considered as the prototype

and its scale model respectively. From the data of Table 4.1, the scale factors are

calculated as;

Aa=l.0 , Ab=0.9793 , Ah=1.1221

The prototype and model have different stacking sequence and number of the

laminae (AN _ 1). Since the number of plies and their stacking sequence are not

identical, then Aw is

A w = CdAa3Ah-3Aq

where

(512Q,, + 512Q  )
c_ = (668.25Qn + 175.5Q22)AN-3

The experimental, predicted and theoretical values of the maximum deflection

of the prototype and the experimental data of the model are presented in Figures

4.7 and 4.8 . The predicted values of maximum deflection of the prototype are

in excellent agreement with its experimental data. Figures 4.9 and 4.10 show

the % discrepancy between the model and prototype. The % discrepancy between

predicted and experimental results of the prototype are less than 5% while this value

is 10% -15% for the theoretical and experimental data of the prototype, and 9%- 12%

for theoretical and predicted data of the prototype.
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CASE - 3

In this case, the E-Glass/Epoxy plate G4 is chosen as model which is used to

predict the behavior of a Kevlar/Epoxy plate. The plate K7 is the prototype.

From the data of Table 4.1 , the scale factors are calculated as;

)_a = 1.0 , Ab = 0.9903 , An = 1.1832

The prototype and its model have different numbers of plies with different stacking

sequences. Similar to Case - 2, the A_ is,

A w = CdAa3Ah-3Aq

where

Figures 4.11 and

(1584Qn +416Q22) _ -3

Cd = (668.25Q,, + 175.--g_2_)AN

4.12 show the predicted and actual experimental deflections

for different loads. The discrepancies for both the model and prototype are shown

in Figures 4.13 and 4.14. The discrepancies between theory and experiment, and

experiment and predicted for the prototype are very high (more than 35%). But the

differences between theoretical and predicted data are less than 11%. Comparing

the values of these two discrepancies ( experiment and theory, and experiment and

predicted) of the prototype, they are in good agreement.
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CASE - 4

In this case, the model and prototype have different stacking sequences of the

laminae and '_N # 1 . Plate K8 is the prototype and K6 is chosen as its scale model.

From the data of Table 4.1 , the scale factors are calculated as;

A_ = 1.0 , Ab = 0.9995 , Ah = 1.0

Since the number of plies and the stacking sequence of the laminates are not

identical, then A,, is

A w = CdAaaAh-3Aq

where

(1584Q11+ 416Q22) N_3
cd = (729Q,, + 729Q2 )

Similar to other cases, Figures 4.15 and 4.16 show the maximum deflections.

The predicted results of the prototype match very well with the experimental data,

especially for P >_ 6001bs. Beyond this point the theory cannot predict the actual

behavior of the prototype (possibly due to fiber or ply failure). Figures 4.17 and 4.18,

which present the % discrepancies for the model and prototype, show this agreement

between experimental and predicted data more clearly. As the load increases the

discrepancy between theory and experiment for both model and prototype increase

rapidly, while the discrepancies between predicted and experimental do not change

significantly.
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CASE - 5

In this case, again the Kevlar/Epoxy plate K6 is chosen as the model and the

Kevlar/Epoxy plate K9 is its prototype. From the data of Table 4.1 the scale factors

are calculated as ;

Aa = 1.0 , A_ = 0.9872 , Ah = 0.9184

Since the prototype and its model have a different number of plies with different

stacking sequences A_ is

Aw = CdA_3 Ah-3 Aq

where

(1404Qn + 54Q22)AN_ 3

Figures 4.19 and 4.20 show the predicted and actual experimental deflections for

different loads. Similar to Case - 4 the predicted data of the prototype match very

well with the experimental data, especially for P > 6001bs. Beyond this point the

theory cannot predict the actual behavior of the prototype (possibly due to fiber or

ply failure). Figures 4.21 and 4.22 , which present the % discrepancies for the model

and prototype, show this behavior clearly. As the load increases, the discrepancy

between theory and experiment for both the model and prototype increase rapidly,

while the discrepancy between predicted and experimental values does not change

appreciablly. The discrepancies for both model and prototype are shown in Figures

4.21 and 4.22.
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CASE - 6

In this case the model and prototype have different stacking sequences of the

laminae and "_N ¢ 1 . Plate K9 is the prototype and K8 is chosen as its scale model.

From the data of Table 4.1 the scale factors are calculated as;

A, = 1.0 , Ab = 0.9877 , Ah = 0.9184

Since the number of the plies and the stacking sequence of the laminates are not

identical, then A_o is

A_ = cdA_3Ah-3Aq

where

(1404Qll + 54Q  )
Cd = (1584Qll + 416Q22)AN-3

Similar to the other cases Figures 4.23 and 4.24 show the maximum deflections.

The predicted values for the prototype match very well with the experimental data,

especially for P < 6001bs. Beyond this point, the theory cannot predicted the actual

behavior of the prototype. Figures 4.25 and 4.26, which represent the % discrepancy

for model and prototype, show this behavior clearly. As the load increases, the dis-

crepancy between theory and experiment for both the model and prototype increases

, while the discrepancy between the predicted and experimental values increases at a

slower rate.
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4.5 Stresses

For the k th lamina, the stresses in terms of the strains and curvatures are;

/ I ]({ l/ /)O'xx 011 012 014 (k) _0xx _xx

O'yy : 012 022 024 (Oyy + z kuu (4.29)

r_ 014 0:4 044 _o k_

Where e°_, e°uv, andT° are the extensional and shear strains on the reference

surface(z = 0) and k_, k_u , kxu represent the change in curvature of the reference

surface. The (_0 are constant for a given lamina. In the case of cylindrical bending

(u = u(x),v = O,w = w(x)) e°_ = 7°_ = ku_ = k_ = 0 which yields

or

Crxx 011

Txy Q14

by substituding the expressions for _0 and k**

O'xx 011 1

O'yy ---- 012 U,x -{- W2 --

TxY 014 2 ,x ZW,xx

#. (k) = "_11 u. +-_w.- zw_

Applying similitude theory for the normal stress, a_,

The resulting similarity conditions are;

Aoxx(k ) : A_) AuA= 1

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)
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3 -1
where A,, = AxAqAD11 and A_ -- A_,AxAB1, AAH

To find which one of Eqs.( 4.35)-(4.37) gives the best prediction for the prototype

behavior, the theoretical stress of the model is projected with each condition and

compared to theoretical stress of the prototype. In this study, the theoretical stress

(a**) of the model is considered as experimental stress of the model. This stress

is projected by using derived similarity conditions, Eqs.( 4.35)-(4.37), in order to

predict the pertinent stress of the prototype.

For complete similarity, Eqs.( 4.35)-(4.37) give the same result. However, for the

distorted model each similarity condition gives different results. Figures 4.27- 4.34

present the predicted and theoretical distributions of the normal stress ax, in various

layers of the prototype for cylindrical bending test. It is observed that the predicted

stresses by Eq.(4.37) agree very well with the theoretical results. Eq.(4.36) cannot

predict the behavior of the prototype accurately. Eq.(4.35) is not a suitable similarity

condition, since its predicted data do not match the theoretical results. The figures

do not include the predicted stresses using Eq.(4.35). The predicted stresses using

Eq.(4.36) are not included in all the figures. This is purposely done in order to

simplify the figures.
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Figure 4.31: Predicted and Theoretical Normal Stress crx= Distributions in Various

Layers of the Prototype K8 (04/904/04/904/04) When K6 (0/90/0...)1s Is Used as

Model.

0.08

0.06 " "'"

0.04

-0.02

-0.04

-0.06
th.(P)

..... pr.(P) Eq.(4.37)

-0.08 1 I

-.5000.0 -2000.0 -1000.0

0.02

o_

v 0.00

I I

o.o lOOO.O 2000.0 3000.0

Stress (Ksi)

Figure 4.32: Predicted and Theoretical Normal Stress or== Distributions in Various

Layers of the Prototype K9 (06/906/06) When K6 (0/90/0...)xs Is Used as Model.
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Figure 4.33: Predicted and Theoretical Normal Stress o== Distributions in

Layers of the Prototype I(9 (06/906/06) When K8 (04/904/04/904/04) Is
Model.
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Figure 4.34: Predicted and Theoretical Normal Stress or== Distributions in Various

Layers of the Prototype G5 (0/90/0...)4s When G1 (0/90/0...)16 Is Used as Model.
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